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The Lotka-Volterra model is shown to be the simplest unique model among 
those models having the same linearized form. We also show that the two- 
dimensional explodator model is not unique in its own class: there are four 
models possessing the same linearized form. Finally, we propose a method 
for the construction of formal chemical models having prescribed properties 
(i.e. having prescribed a type of one or more equilibrium points). 
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1.  Introduction 

The investigations of Hanusse [1], Tyson and Light [2] and Prta  [3] have shown 
that in two-component bimolecular systems there is only one oscillator: the 
Lotka-Volterra model. The following question has now arisen; is it also true that 
the Lotka-Volterra model is the simplest unique one among all those models 
having the same linearized form (around their own stationary state)? From both 
chemical and mathematical points of view this is a very different question. 

From the mathematical point of view, we provide a new proof  that the Lotka- 
Volterra model is the only possible two-component bimolecular oscillator. 
(Strictly speaking, this statement is proved under a slightly different set of 
assumptions.) It is also shown that the reduced explodator model by Farkas 
et al. [4] is almost just as unique in its own class. However, the chemical 
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approach seems to be more useful: The present investigation bears on the area 
of designing periodic reactions. Experimental work in this field has been reviewed 
by Epstein [5], while Escher [6], Schnakenberg [7], and Cs~isz~ir et al. [8] have 
discussed the theory. Our results may be obtained as results of a mixed-integer 
programming problem too, and this formulation has led us to construct a promis- 
ing method for the design of chemical models with prescribed irregularities, e.g. 
with periodic or exploding solutions, with multistationarity, or with local con- 
trollability [9]. 

The present paper is an exposition of a part of our lecture [10] presented in 
Bordeaux. 

2. Uniqueness of the Lotka-Volterra model 

Exactly formulated, the question is as follows: Let us consider the linearized form 

~ : - ~ ,  ~ : ~  (1) 

of the Lotka-Volterra model 

2 = x - x y ,  $ ,=xy-y .  (2) 

What is the simplest two-dimensional kinetic system that leads to (1) when 
linearized around one of its own stationary points? 

By "kinetic" we mean that the system of differential equations we are looking 
for is a polynomial system which does not contain negative cross-effects [11], 
i.e. it does not contain terms expressing the decrease of  one of the components 
without the participation of that component in a polynomial term. Equation (1) 
is an example of a non-kinetic equation since -~7 expresses the decrease of ( in 
a process in which ~ does not take part. 

In order the define "simplest" we first remark that no linear kinetic system may 
lead to (1) through linearization since the linearized form of a linear system is 
itself, and (1) is non-kinetic. 

Thus, let us look for the system to be linearized among systems of the second 
degree, i.e. among those systems of the form 

2 = ax2+ bxy+ cy2+ dx+ e y + f  

.~ = A x 2  + Bxy + Cy2 + Dx + Ey + F (3) 

and let us suppose that the system is kinetic. This means that 

c, e,f, A, D, F>-O. (4) 

Let us suppose too that there are no genuine elementary reactions of the third 
order. This implies that 

a,C<-O (5) 

and that at most one of  b and B is strictly positive. (The arguments leading to 
these inequalities can be found in [1], p. 1247, or in [2], Sect. II.) Finally, let (3) 
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be the simplest possible equation in the sense that at most two of the coefficients 
on the right-hand sides of  (3) differ from zero. (The reader may wish to check 
that no kinetic solution to the problem exists when one requires that only one 
coefficient be nonzero. On the other hand, two nonzero coefficients will suffice.) 

Denoting one of the positive stationary points of (3) by (2, fi) [around which the 
linearized form should be the same as the linearized form of the Lotka-Volterra 
model around (2, 37)], the above requirements can be expressed as follows. The 
fact that (2, 37) is a stationary point means that 

a~2+ b~37+ c372+ d~ + e37+ f = 0 (6) 

A x 2 q  - BX37 + Cfi2q - DX + E37 + F = 0. (7) 

Equation (3), when linearized around (~, 37), gives (1), which implies 

2aY~+by+d = 0  b:~+2c37+e=-I (8) 

2A~+B37+D=l  BY~+2C37+E=O. (9) 

First, let us concentrate on the coefficients of  the first equation of (3). We have 
to determine those solutions of the system (6), (8a, b) that have at most two 
components different from zero. It is clear that at least one of b, c and e must 
be negative because of (8b). On the other hand, neither c nor e may be negative 
because of  (4). Thus, b must be less than zero. If it is, at least one of  a and d 
must be positive because of (8a). On the other hand, a may not be positive 
because of  (5). We now show that it is enough to suppose that only b and d 
differ from zero, namely b < 0 and d < 0. Assuming that all of  the other coefficients 
are zero, system (6), (8a, b) reduces to 

b~37 + d$ = 0 b37+d =0  b~= -1 .  (10) 

This system of linear equations has a unique solution: 

b = - l / X ,  d = 37/X. (11) 

The form of (3a) in this case is: 

:~ = (x/  X)( f i -  y). 

Let us turn to the coefficients of the second equation of (3). We have to determine 
those solutions of the system (7), (9a, b) that have at most two components 
different from zero. It is obvious that at least one of  A, B and D must be positive 
because of  (9a). Two cases may occur: in the first, at least one of A, B and D 
is negative, but this can only be B because of (4). In the second, none of  A, B 
and D is negative. In this case, (7) implies that at least one of C, E and F is 
negative, but this can only be either C or E because of (4). Thus, the set of 
nonzero coefficients may be either 

A > 0 ,  B < 0  (12) 

D > 0 ,  B < 0  (13) 
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A > 0 ,  C < 0  (14) 

A > 0 ,  E < 0  (15) 

B > 0 ,  C < 0  (16) 

B > 0 ,  E < 0  (17) 

D > 0 ,  C < 0  (18) 

D > 0 ,  E < 0 .  (19) 

Equation (9b) implies that either B = C = E = 0 or at least two of B, C and E 
differ from zero. Only conditions (16) and (17) represent cases that are not 
excluded by this argument. System (7), (9a, b) is contradictory under condition 
(16). Thus, the only admissible case is (17) and we find 

B = i / y ,  E = - ~ / Y .  (20) 

The form of (3b) in this case is 

= ( y / y ) ( x  - ~) .  (21) 

3. Non-uniqueness of the two-dimensional explodator 

We now consider the linearized form 

~ =-2~7, ~ = C~:+ (~7 (C>O)  (22) 

of the two-dimensional explodator [4] 

= x(1 _y2), y = C y ( x y  - 1). (23) 

It is obvious that no linear kinetic system may lead to (22) through linearization 
since (22) is non-kinetic. 

The reader will find no difficulty in showing by arguments similar to those of 
Sect. 2 that no kinetic system of the form (3), having only two nonzero coefficients 
in both of the equations, may have (22) as its linearized form. 

Thus, let us look for the system to be linearized to (22) from among systems of 
the third degree, i.e. among systems of the form 

Yr = ax  3 + bx2 y + cxy 2 q- dy 3 + ex 2 + f x y  + gy2 q_ hx  + iy + j 
(24) 

.~ = A x  3 + Bx2  y + C x y  2 + D y  3 + E x  2 + F x y  + G y  2 + H x  + I y  + J 

and let us suppose that the system is kinetic. This implies, in the same way as 
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in Sect. 3 (cf. [1] and [2]), that 

d,g , i , j>_O,  A , E , H , J > _ O .  (25) 

Let us suppose that there are no genuine elementary reactions of the fourth order. 
This implies that 

a_<0, D_<0 (26) 

and that b and B (and c and C as well) together can only be nonnegative if 
both of them are zero. Finally, let (24) be the simplest possible equation in the 
sense that at most two of  the coefficients of the right hand sides differ from zero. 

Denoting one of the positive stationary points of (24) by (if, 37) [around which 
the linearized form should be (22)], the above requirements can be expressed as 
follows. The fact that (if, 37) is a stationary point means that 

a~ 3 + b.g237 -t- C.~37 2 + d37 3 + e~ "2 +f~37 + g372 + hE + i37 + j  = 0 

A~ 3 + B9~237 + C9~372 + D37 3 + Eg 2 + F9737 + G37 2 + H2 + I~ + J = 0. 

(27) 

(28) 

Equation (24), when linearized around (2, y), gives (22), which implies that 

3 a.s + 2b~37 + c372 + 2e.~ +f~ + h = 0 

by~2 + 2c:~37 + 3d.f2 + f~  + 2g37 + i = - 2  

3A~2+ 2B*y + C372+ 2E:~+ Fp+  H = C? 

B:~2 + 2 C:~.f + 3 D372 + F~ + 2 G.~ + I = C. 

(29) 

(30) 

(31) 

(32) 

First, let us concentrate on the coefficients of the first relation of (25). We have 
to determine those solutions of the system (27), (29), (30) that have at most two 
components different from zero. It is obvious that at least one of b, c, and f must 
be negative because of (25a) and (30). Two cases may occur: In the first, at least 
one of b, c and f is positive. In the second, none of b, c and f is positive. In the 
latter case (29) implies that at least one of a, e and h is positive but this can 
only be either e or h because of (26a). Thus, the set of nonzero coefficients may 
be either 

b<O, c>O (33) 

b < O, f >  0 (34) 

c<O, b>O (35) 

c<O, f > O  (36) 

f < 0 ,  b < 0  (37) 

f <  O, r < 0 (38) 
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b < 0 ,  e > 0  (39) 

b < 0, h > 0 (40) 

c < 0 ,  e > 0  (41) 

c < 0, h > 0 (42) 

f < 0 ,  e > 0  (43) 

f < 0 ,  h > 0 .  (44) 

System (27), (29), (30) is contradictory under conditions (33), (34), (35), (37), 
(38), (40), (41) and (43). Therefore, the admissible cases are (36), (39), (42) and 
(44), for which 

c = -2/92y, f =  2/92 (36') 

b = -2/92 2, e = 2)7/92 2 (39') 

c = -1/9237, h = 37/92 (42') 

f =  -2/92, h = 237/92. (44') 

The form of  (24a) in these cases is, respectively, 

:i = (2xy /  92y)(y-  y)  

= (2x2/922)(37 - y) 

= (x/~y)(37 2 _y2) 

= ( 2 x / ~ ) ( y - y ) .  

(36") 

(39") 

(42") 

(44") 

Let us turn to the coefficients of the second equation of (24). We have to determine 
those solutions of the system (28), (31), (32) that have at most two components 
different from zero. 

It is obvious, because of (31), that at least one of A, B, C, E, F and H must be 
positive. Two cases may occur: in the first one, at least one of  these coefficients 
is negative, but this can only be B, C or F because of (26b); in the second case, 
none of  these coefficients is negative. In this latter case, (28) and (25b) imply 
that at least one of D, G and I is negative. 

Similarly, at least one of  B, C, D, F, G a n d / ,  must be positive because of (32). 
On the other hand, D cannot be positive because of (26b). Two cases may again 
occur: in the first one, at least one of B, C, F, G and ! is negative, while in the 
second one none of them is negative. In this latter case, (28) and (25b) imply 
that D is negative. 
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The following 15 possibilities remain as the intersection of the sets of  nonzero 
coefficient pairs defined by the two previous paragraphs: 

B > 0, C < 0 (45) 

B > 0, F < 0 (46) 

B > 0, D < 0 (47) 

B > 0 ,  G < 0  (48) 

B > 0; I < 0 (49) 

C > 0, B < 0 (50) 

C > 0 ,  F < 0  (51) 

C > 0, D < 0 (52) 

C > 0 ,  G < 0  (53) 

C > O ,  I < 0  (54) 

F > 0 ,  B < 0  (55) 

F > 0, C < 0 (56) 

F > 0 ,  D < 0  (57) 

F > 0 ,  G < 0  (58) 

F > 0 ,  I < 0 .  (59) 

Under conditions (46), (49), (52), (53), (55), (56) and (59), our system (28), (31), 
(32) is contradictory. Under conditions (45), (47), (48), (50), (52) (57) and (58), 
the system can only be solved if an additional condition of  the type 97/)7 = -1 ,  
~/2)7 = - 1 ,  etc. is fulfilled. However, these conditions are impossible because of 
the positivity of ~ and )7. 

The only condition under which the system (28), (31), (32) has the desired solution 
is (54), which gives 

c = 2, i = (s4') 

if and only if the additional condition ~ =)7 is met as well. The form of (24b) in 
this case is 

fi = ( C / Y,2) xy  2 -  Cy  = d y [  ( xy  / Y~ 2) - 11. (54") 

In summary, there are four systems of kinetic differential equations fulfilling the 
above requirements, namely, (36"), (54"); (39"), (54"); (42"), (54"); and (44"), (54"). 

The argument formulated after (26) excludes none of these models. The analogous 
argument was not needed in the case of the Lotka-Volterra model either. 
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Now, for the sake of clarity let us suppose that ~ = )7 = ~ = 1. Then the  models 
we have obtained are 

Yc=2xy(1-y), p = y ( x y - 1 )  (36") 

~ = 2 x 2 ( 1 - y ) ,  y = y ( x y - 1 )  (39") 

= x(1 _y2), 3) = y(xy - 1) (42") 

2 = 2x(1 - y ) ,  j) = y(xy - 1). (44") 

A possible formal chemical reaction giving rise to (42'") is 

X + 2 Y o 3 Y ,  A+X-~2X ,  Y ~ B ,  

which is the two-dimensional (or reduced) explodator. 

(60) 

4. Discussion 

We have shown that the Lotka-Volterra model is the simplest unique model 
among all those models having the same linearized form. We have also shown 
that only three models are distinct from the two-dimensional explodator, if all 
of these models are to have the same linearized form. These models are therefore 
worth investigating by methods of the qualitative theory of differential equations 
since the two-dimensional explodator [4], as well as the original [12] explodator, 
have already been studied by such methods. However, it seemed to us to be a 
relatively easy task to formulate a common scheme, in the language of mixed- 
integer programming, for the construction of formal chemical reactions possessing 
prescribed properties. This enabled the construction of formal chemical reactions 
having desired features (e.g. multiple stationary states with prescribed linear 
parts, local controllability, etc.) algorithmically by computer [9]. 
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